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Abstract

A-TTTM and S-MARTTM are novel elastic ring tourniquets (ERTs) used for the control of hemodynamic shock and
for bloodless surgical procedures on limbs. The ERT device is essentially a silicone ring surrounded by a stockinette
sterile gauze. Since the contact pressure applied by the ERT is determined by its geometric and mechanical properties
and cannot be adjusted, it is important to develop a mechanical model that can be used to ensure that the contact pres-
sure remains low enough not to cause local tissue damage. Although the calculation of the contact pressure applied by a
silicone ring seems to be a simple classical problem, it is shown that the accurate prediction of this contact pressure
requires analysis of a number of complicating features, which are related to nonlinear geometric and material influ-
ences. This paper presents a hierarchy of mechanical models which include: a simple strength of materials model; mod-
els based on the theory of a Cosserat curve and a generalized string (which includes deformation of the cross-section);
exact axisymmetric plane strain nonlinear elasticity; and axisymmetric nonlinear finite element analysis. It is shown that
the Cosserat model provides reasonable predictions of the response of the silicone ring. Since numerical simulations
with the Cosserat model are much faster than those with the finite element model, the Cosserat analysis is more suitable
for optimization of the thickness of the stockinette, which can significantly reduce both the maximum and average con-
tact pressures applied by the ERT on the skin.
� 2004 Elsevier Ltd. All rights reserved.

Keywords: Auto transfusion; Contact; Cosserat; Elastic ring; Tourniquet
0020-7683/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijsolstr.2004.10.034

* Corresponding author. Tel.: +972 4 829 3188; fax: +972 4 829 5711.
E-mail addresses: mbrubin@tx.technion.ac.il (M.B. Rubin), edoardo.mazza@imes.mavt.ethz.ch (E. Mazza).

mailto:mbrubin@tx.technion.ac.il 
mailto:edoardo.mazza@imes.mavt.ethz.ch 


3412 M.B. Rubin, E. Mazza / International Journal of Solids and Structures 42 (2005) 3411–3437
1. Introduction

The problem of the contact pressure between an elastic ring and a rigid cylinder is the classical Lame
problem in linear elasticity. The solution is relevant for shrink fittings and lubrication seals. However,
the present work is motivated by a biomedical application where an elastic ring tourniquet (ERT) is used
in emergency medicine to displace blood from the limbs for treatment of patients in hemodynamic shock or
cardiac arrest. Although the analysis of the ERT seems to be simple, it is shown that the problem is actually
quite complicated and requires examination of the influence of a number of nonstandard effects which
include:

(E1) Modeling cross-sectional deformations in the ring,
(E2) Modeling the shape of the cross-section,
(E3) Large deformations,
(E4) Values of pressure which are not small relative to the circumferential stress,
(E5) Material nonlinearity,
(E6) Bending effects.

By way of background it is noted that the effect of the ERT is an Auto-Transfusion Tourniquet (A-TTTM,
OHK Medical Devices, 2002) which brings the patient�s own blood into the vital organs. Another version of
the ERT (S-MARTTM, OHK Medical Devices, 2002) is used in orthopedic surgery to remove the blood (exs-
anguinate) from a limb prior to and during surgery in order to create an essentially bloodless surgical field.
Both devices apply constricting pressure on the limb to the extent that the arteries and other blood vessels
within it are collapsed and blood ceases to flow into the limb.

The ERT device is essentially a toroidal ring of silicone which has a circular cross-section. A sterile elas-
tic sleeve (stockinette) is rolled onto the ring together with ribbons and handles. By merely pulling the han-
dles apart, the ring and stockinette roll onto the limb from the distal to the proximal ends and the mean
radius of the ring is expanded to 1.5–2.5 times its unstressed value. The objective of applying the tourniquet
is to temporarily totally occlude the blood vessels in the limb by increasing the pressure in the limb above
the patient�s systolic blood pressure. However, the pressure applied by the ERT on the tissue must be lim-
ited to ensure that the tissue is not damaged. Direct measurement of the pressure applied between a bio-
medical device and the compliant tissue is known to be quite difficult and special transducers have been
developed for such applications (Paris-Seeley et al., 2000). Moreover, unlike for a standard pressure cuff,
there is no gauge that monitors pressure. Specifically, the contact pressure applied by the S-MARTTM device
cannot be adjusted and is determined by the dimensions of the device and the dimensions of the limb. Con-
sequently, it is important to develop a mechanical model which can predict the magnitude of this contact
pressure.

During the development stages of the device a large number of experiments were performed on consent-
ing human subjects to asses: the extent of blood vessel occlusion, the level of discomfort due to the pressure
applied by the device, and to ensure that no tissue damage was observable. More recently, the device has
been evaluated in a number of bloodless surgeries on the hand (Boiko and Roffman, 2004). The results of
these clinical evaluations confirm the ease with which the device can be applied, its success in occluding the
blood flow, reduced application time of the tourniquet, and the fact that no tissue damage was observed
either during the operation or during post-operative follow-up examinations.

A complete analysis of the ERT would require a difficult finite element calculation which should include
nonlinear geometric effects and accurate modeling of the constitutive properties of the silicone ring, the
stockinette and the tissues in the limb. Such a complete analysis is outside of the scope of the present work,
especially since the constitutive properties of the tissues in the limb are not known. Also, it is reasonable
to expect that the details of the contact pressure distribution will depend on patient specific anatomical
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information about the geometry of the bone, muscles and arteries in the limb at the location of application
of the ERT. In practice, such patient specific details are not known. Consequently, it is desirable to supple-
ment available experimental data with analysis of a simplified model which is not patient specific and which
can provide an upper bound on the pressure applied by the ERT on the skin.

As mentioned earlier, here attention is focused on the prediction of the contact pressure between a non-
linear elastic ring and a rigid circular cylinder. The effects of the stockinette are also modeled and shown to
significantly reduce the magnitudes of the maximum and average contact pressures. This model is expected
to produce an upper bound on the contact pressure since flexibility of the limb will tend to decrease the
deformations of the ERT and tend to increase the effective contact area between the ERT and the skin, both
of which will tend to reduce the contact pressure.

The main objective of this paper is to examine interesting mechanical phenomena associated with the
modeling of this problem. Specifically, here a hierarchy of theories of a Cosserat curve is developed which
incorporate different levels of complexity and which helps identify the most significant mechanical phenom-
ena needed to model the problem. In all cases the ring is modeled as an incompressible, isotropic elastic
material.

As a first attempt to predict this contact pressure it is natural to consider a nonlinear version of the clas-
sical Lame problem where internal pressure is applied to a circular ring with a rectangular cross-section.
Specifically, in its stress-free reference configuration the ring is assumed to have radial thickness H and axial
width W. The simple analysis of the ring, which is based on the free body diagram shown in Fig. 1, usually
is applied to linear analysis of a thin ring. In particular, it will be shown that for this contact problem it is
essential to model the effects of cross-sectional deformation in the rod. This is consistent with results for a
linear contact problem reported in Naghdi and Rubin (1989).

The simplest approach is described in Section 2 and is based on a simple nonlinear analysis of the prob-
lem sketched in Fig. 1. Section 3 summarizes an exact axisymmetric plane strain nonlinear elasticity solu-
tion. However, closed form exact solutions of the three-dimensional theory are limited to simple functional
forms of the strain energy. Therefore, to include more general material nonlinearity the problem is modeled
using the theory of a Cosserat curve (Section 4) which includes the effects of cross-sectional deformation
and bending. Also, within the context of the Cosserat theory, the effect of bending can be eliminated to
obtain a simpler model of a Cosserat generalized string which includes the cross-section deformation
pc

σσ

2r1

2r2  = 2(r1+h)

Fig. 1. Sketch of the deformed configuration of the simple model of the ring.
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(Section 5) but no bending strength. Section 6 considers the case of uniaxial stress and the results in Section
7 indicate that the theory of a generalized Cosserat string is sufficiently accurate to model most aspects of
the ERT device. Experimental results described in Section 8 indicate that a modified strain energy function
is needed to model the uniaxial stress response of the ERT device. Section 9 uses a constrained form of the
theory of a Cosserat generalized string to model the effects of the toroidal shape of the ERT ring. The re-
sults of the Cosserat theory are shown to be reasonably accurate relative to a finite element analysis de-
scribed in Section 10. Section 11 describes modifications of the Cosserat and finite element models which
include the influence of the stockinette. In particular, the Cosserat model is used to show that increasing
the thickness of the stockinette can cause significant reduction in the maximum and average contact pres-
sures applied by the ERT. Finally, conclusions are presented in Section 12.
2. Simple analysis

Here, the ERT is modeled as a circular ring with rectangular cross-section. In its stress-free reference
configuration the ring has inner radius R1, outer radius R2, mean radius R, radial thickness H and width
W. Similarly, in its deformed configuration the ring has inner radius r1, outer radius r2, mean radius �r,
radial thickness h and axial width w, so that
R ¼ R1 þ R2

2
; H ¼ R2 � R1; �r ¼ r1 þ r2

2
; h ¼ r2 � r1: ð2:1Þ
The inner surface of the ring is subjected to the contact pressure pc and its outer surface and edges are trac-
tion free (see Fig. 1). Moreover, the ring is assumed to be made of an incompressible, isotropic nonlinear
elastic material.

The simple analysis of equilibrium in the vertical direction replaces the pressure applied by the tissue on
the ring with a pressure at the base (like that associated with a liquid in equilibrium) and it assumes that the
circumferential Cauchy stress r (force per unit present area) is uniform through the thickness of the ring.
Then, force equilibrium in the vertical direction yields the standard equation
pc ¼
hr
r1

: ð2:2Þ
Next, introducing the stretches {a,b,k}
a ¼ w
W

; b ¼ h
H

¼ r2 � r1

R2 � R1

; k ¼ �r

R
¼ r1 þ r2

R1 þ R2

; ð2:3a–cÞ
the incompressibility condition requires
abk ¼ 1: ð2:4Þ

Then, the Cauchy stress r can be related to the engineering stress P (first Piola–Kirchhoff stress, i.e. the
force per unit reference area) by the formula
hwr ¼ HW P; r ¼ kP; ð2:5Þ

and Eq. (2.2) can be rewritten in the form
pc ¼
b�r
r1

� �
HP

R
: ð2:6Þ
Furthermore, for the simple analysis it is assumed that the ring is so thin (H=R � 1) that the pressure is
negligible relative to the circumferential stress r so the ring in a state of uniaxial stress. Within the context
of this assumption the stretches a and b are equal
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a ¼ b ¼ 1ffiffiffi
k

p ; ð2:7Þ
and (2.6) becomes
pc ¼
HP

R
ffiffiffi
k

p
1 � H

2Rk3=2

n o : ð2:8Þ
Once a form for P as a function of k is specified
P ¼ PðkÞ; ð2:9Þ

Eq. (2.8) can be used to estimate the pressure applied by the ring. Also, the stretch k1 based on the inner
radius r1 is calculated by
k1 ¼
r1

R1

: ð2:10Þ
3. Axisymmetric plane strain analysis

Rivlin (1949) considered a number of problems of large deformation of nonlinear isotropic incompress-
ible elastic materials which include a generalization of the Lame problem. For simplicity, the relevant re-
sults will be briefly developed in this section for a specific strain energy function. In particular, here a
material point, which is located by the radius R in the reference configuration, is deformed to the radius
r in the present configuration. Also, the equilibrium equations and boundary conditions are written in
terms of the present radius, and the components of the Cauchy stress T*. Here, a superposed (*) is used
to distinguish quantities related to the three-dimensional theory from other quantities introduced later re-
lated to the Cosserat theory which use the same symbol but without the superposed (*). Specifically, for the
axisymmetric problem under consideration the cylindrical polar base vectors {er,eh,e3} are related to the
fixed rectangular Cartesian base vectors ei (i = 1,2,3) by the standard formulas
er ¼ cos he1 þ sin he2; eh ¼ � sin he1 þ cos he2; ð3:1Þ

and the Cauchy stress T* is expressed in terms of its nonzero components
T� ¼ T �
rrer 	 er þ T �

hheh 	 eh þ T �
33e3 	 e3; ð3:2Þ
where the symbol 	 denoted the tensor product. Moreover, in the absence of body force and inertia terms
the only nontrivial equilibrium equation becomes
oT �
rr

or
þ T �

rr � T �
hh

r
¼ 0: ð3:3Þ
Here, the position vectors X* in the reference configuration and x* in the present configuration are spec-
ified by
X� ¼ Rer þ X 3e3; x� ¼ r̂ðRÞer þ x3e3;

r ¼ r̂ðRÞ; x3 ¼ aX 3; R1 6 R 6 R2; �W
2

6 X 3 6
W
2
;

ð3:4Þ
where the function r̂ðRÞ and the constant stretch a need to be determined by the solution. It then follows
from (3.4) that the deformation gradient F* and the dilatation J* become
F� ¼ dr
dR

ðer 	 erÞ þ
r
R
ðeh 	 ehÞ þ aðe3 	 e3Þ; J � ¼ detðF�Þ ¼ a

r
R

dr
dR

: ð3:5Þ
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Thus, the nonlinear form of the incompressibility condition requires
a
r
R

dr
dR

¼ 1: ð3:6Þ
Furthermore, using the kinematic conditions that
r1 ¼ r̂ðR1Þ; r2 ¼ r̂ðR2Þ; ð3:7Þ

Eq. (3.6) can be integrated to obtain
r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

1 þ
1

a
ðR2 � R2

1Þ
r

; R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

1 þ aðr2 � r2
1Þ

q
; r2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

1 þ
R2

2 � R2
1

a

s
: ð3:8a–cÞ
The boundary conditions on the inner and outer surfaces of the ring require
T �
rrðr1Þ ¼ �pc; T �

rrðr2Þ ¼ 0: ð3:9Þ

Also, the condition that the ends (X3 = ±W/2) are stress free is approximated in a St Venant sense using the
condition that the total axial force applied to these ends vanishes
2p
Z r2

r1

T �
33rdr ¼ 0: ð3:10Þ
For the simple case of an incompressible isotropic Neo–Hookean nonlinear elastic material, the specific
(per unit mass) strain energy function R* is expressed in terms of the first invariant of the left Cauchy–
Green deformation tensor B*, such that
q�
0R

� ¼ 1

6
f ða�Þ; f ða�Þ ¼ Eða� � 3Þ; a� ¼ B� 
 I; B� ¼ F�F�T; ð3:11a–dÞ
where q�
0 is the reference mass density and E is the zero-stress value of Young�s modulus. Then, the consti-

tutive equation for the stress becomes
T� ¼ �c�Iþ 1

3

df
da� B

�;

T �
rr ¼ �c� þ E

3

R2

a2r2

� �
; T �

hh ¼ �c� þ E
3

r2

R2

� �
; T �

33 ¼ �c� þ Ea2

3
;

ð3:12Þ
where c* is an arbitrary function due to the incompressibility constraint. Now, with the help of (3.8) the
equilibrium equation (3.3) can be solved, subject to the boundary conditions (3.9) to obtain
T �
rr ¼ �pc þ

E
6a2

ðr2 � r2
1Þðar2

1 � R2
1Þ

r2r2
1

þ a ln
½R2

1 þ aðr2 � r2
1Þ�r2

1

R2
1r2


 �� �
;

T �
hh ¼ T �

rr þ
E
3

r2

R2
� R2

a2r2

� �
; T �

33 ¼ T �
rr þ

E
3

a2 � R2

a2r2

� �
:

ð3:13Þ
Next, using the boundary condition on T �
rr at r = r2, the contact pressure pc is determined by the expression
pc ¼
E

6a2

ðr2
2 � r2

1Þðar2
1 � R2

1Þ
r2

1r
2
2

þ a ln
R2

2r
2
1

R2
1r

2
2


 �� �
: ð3:14Þ
Furthermore, the boundary condition (3.10) can be written in the form
�ðr2
2 � r2

1Þ½ðR2
1 � ar2

1Þ þ 2ar2
2ð1 � a3Þ�

R2
1r

2
2

þ ln
R2

2r
2
1

R2
1r

2
2

� �
¼ 0: ð3:15Þ
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Thus, the solution is obtained by specifying values for {E,R1,R2} and r1. Then, with the help of (3.8c), the
condition (3.15) is solved iteratively for the stretch a. Once a is known, the contact pressure pc is determined
by (3.14) and the stretches {b,k,k1,k2} are determined by (2.3b,c) and (2.10).
4. Theory of a Cosserat curve

The theory of a Cosserat curve is a nonlinear continuum theory (e.g. Antman, 1972, 1995; Green et al.,
1974a,b) that can be used to model the ring. Here, for convenience use is made of the notation employed in
Rubin (2000). The static form of this theory models the ring as a space curve (or rod) whose material points
in the deformed configuration are located by the position vector x, which is a function of one convected
coordinate h3. In addition, at each point of the rod, two director vectors da (a = 1,2) are introduced to mod-
el deformations of line elements in the rod�s cross-section. The kinematics of the stress-free reference con-
figuration are specified by
X ¼ Xðh3Þ; Da ¼ Daðh3Þ; D3 ¼ X;3; D1 
D2 
D3 > 0; D1=2
33 ¼ jD3j; ð4:1Þ
where a comma denotes partial differentiation with respect to h3. Also, the kinematics of the deformed pres-
ent configuration are specified by
x ¼ xðh3Þ; da ¼ daðh3Þ; d3 ¼ x;3; d1 
 d2 
 d3 > 0; d1=2
33 ¼ jd3j: ð4:2Þ
The balance laws of the Cosserat theory can be developed by a direct approach or they can be motivated
from the three-dimensional theory by using the kinematic assumptions that the three-dimensional position
vectors X* and x* are expressed in the forms
X� ¼ Xþ haDa; x� ¼ xþ hada; ð4:3Þ
where for a rectangular cross-section
jh1j 6 �W
2
; jh2j ¼ �H

2
: ð4:4Þ
Here, attention is confined to equilibrium so the balances of linear and director momentum become
mbþ t3;3 ¼ 0; mba � ta þma
;3 ¼ 0; ð4:5Þ
where the assigned fields mb and mba are due to body force and tractions on the lateral surface of the rod,
ti are intrinsic director couples, and t3 is the force and ma are the couples applied to the rod�s end. Also,
by introducing the second order tensor T
d1=2
33 T ¼ ti 	 di þma 	 da;3 ð4:6Þ
the balance of angular momentum requires T to be symmetric
T ¼ TT: ð4:7Þ

In (4.6) and throughout the text, the usual summation convention is used for repeated indices with Latin
indices having the range (i = 1,2,3) and Greek indices having the range (a = 1,2).

For an elastic rod it is convenient to introduce the deformation tensor F associated with homogeneous
deformations (when F is independent of h3) and the vectors ba associated with inhomogeneous deforma-
tions by the formulas
F ¼ di 	Di; ba ¼ F�1da;3 �Da;3 ð4:8Þ
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where the reciprocal vectors Di and di are defined in terms of the Kronecker delta dj
i such that
Di 
Dj ¼ dj
i ; di 
 dj ¼ dj

i : ð4:9Þ

Furthermore, for a constrained elastic rod the kinetic quantities {T, ti,ma} separate additively into parts
fbT; t̂i; m̂ag derived from the strain energy function R and parts fT;�ti; �mag characterizing the constraint
responses
T ¼ bT þ T; ti ¼ t̂
i þ�t

i
; ma ¼ m̂a þ �ma; R ¼ RðC; baÞ;

C ¼ FTF; d1=2
33
bT ¼ 2mF

oR
oC
FT; m̂a ¼ mF�T oR

oba

;
ð4:10Þ
where m is related to the mass per unit length of the rod. Moreover, the work in Rubin (1996, 2000) derived
restrictions on the strain energy function which ensure that the Cosserat theory will predict exact solutions
for all homogeneous deformations of a rod made from a uniform, homogeneous, elastic material. In par-
ticular, for the circular rod under consideration here, the strain energy function can be written in the form
mR ¼ mR�ðCÞ þ 1

2
D�1=2

33 HW Kab 
 ðba 	 bbÞ; m ¼ q�
0D

1=2
33 HW ; ð4:11Þ
where the three-dimensional strain energy R* can be a general function of its argument and where it has
been assumed that the strain energy is a quadratic function of the inhomogeneous strains ba, with Kab being
constant tensors.

For later convenience, in addition to the incompressibility constraint which requires the dilatation J to
remain constant, shear deformation in the rod�s cross-section is constrained so that the constraints become
J ¼ detðFÞ ¼ 1; d1 
 d2 ¼ 0: ð4:12Þ

It then follows from the work in Rubin (2000, Sec. 5.9) that the constraint responses are given by
d1=2
33 T ¼ �HW ½cIþ c12ðd1 	 d2 þ d2 	 d1Þ�; �t

1 ¼ �HW ½cd1 þ c12d2�;
�t

2 ¼ �HW ½cd2 þ c12d1�; �t
2 ¼ �HW ½cd3�; �ma ¼ 0;

ð4:13Þ
where c and c12 are arbitrary functions of h3. Next, confining attention to the case of an isotropic material,
the three-dimensional strain energy function R* is taken to be a general function of the invariant a
q�
0R

� ¼ 1

6
f ðaÞ; a ¼ C 
 I ¼ B 
 I; B ¼ FFT; f ð3Þ ¼ 0;

df
da

ð3Þ ¼ E; ð4:14Þ
where E is the zero tension Young�s modulus and the tensors Kab are specified so that (Rubin, 2000, Sec.
5.26)
K12 ¼ K21 ¼ 0: ð4:15Þ

Consequently, the constitutive equations become
d1=2
33 T ¼ HW �cI� c12ðd1 	 d2 þ d2 	 d1Þ þ

1

3

df
da
B

� �
;

ti ¼ ½d1=2
33 T�ma 	 da;3� 
 di;

m1 ¼ D�1=2
33 HW F�TK11b1; m2 ¼ D�1=2

33 HW F�TK22b2:

ð4:16Þ
Now, the kinematics of the ring in its reference configuration are given by
X ¼ RerðhÞ; D1 ¼ e3; D2 ¼ erðhÞ; h ¼ h3

R
; 0 6 h3

6 2pR;

D3 ¼ X;3 ¼ eh; D1=2 ¼ D1 
D2 
D3 ¼ 1; Di ¼ Di; D1=2
33 ¼ jD3j ¼ 1;

ð4:17Þ
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where the mean radius R is defined in (2.1) and D3 is a tangent vector to the reference curve. Also, the kine-
matics of the present deformed configuration are given by
x ¼ �rerðhÞ; d1 ¼ ae3; d2 ¼ berðhÞ; d3 ¼ x;3 ¼ keh;

d1=2
33 ¼ jd3j ¼ k; d1 ¼ 1

a
e3; d2 ¼ 1

b
er; d3 ¼ 1

k
eh;

F ¼ di 	Di ¼ ae3 	 e3 þ ber 	 er þ keh 	 eh; J ¼ def F ¼ abk;

b1 ¼ F�1d1;3 �D1;3 ¼ 0; b2 ¼ F�1d2;3 �D2;3 ¼
1

R

b
k
� 1

� �
eh;

ð4:18Þ
where the stretches {a,b,k} are defined by (2.3c). Thus, using the expression for K22 in Rubin (2000, Sec.
5.26) (with l* = E/3 and m* = 1/2, and H interchanged with W, and Mi = Di) the constitutive equations
(4.16) yield
t1 ¼ HW
a

�c þ 1

3

df
da

a2

� �
e3 � HWb½c12�er;

t2 ¼ HW
b

�c þ 1

3

df
da

b2

� �
er � HWa½c12�e3;

t3 ¼ HW Peh; P ¼ 1

k
�c þ 1

3

df
da

k2


 �
� EIb

HW k2R
2

b
k
� 1


 �� �
;

m1 ¼ 0; m2 ¼ EI

kR

b
k
� 1


 �
eh; I ¼ H 3W

12
;

ð4:19Þ
where I is the second moment of the area of the cross-section relative to the h2 coordinate and P is the aver-
age engineering circumferential stress.

Next, it is convenient to formulate the more general problem shown in Fig. 2 where the deformed ring is
subjected to internal pressure p1, external pressure p2, shear forces {V1,V2} and moments {M1,M2} on the
ring�s axial surfaces acting in the circumferential directions. Specifically, the traction vectors applied to the
lateral boundary of the rod are specified by
t�
W
2
; h2; h3


 �
¼ s2ðh2Þer þ r2ðh2Þe3; t� �W

2
; h2; h3


 �
¼ �s1ðh2Þer � r1ðh2Þe3;

t� h1;
H
2
; h3


 �
¼ �p2er; t� h1;�H

2
; h3


 �
¼ p1er;

ð4:20Þ
where the pressures {p1,p2} are independent of hi and the stresses {r1,r2,s1,s2} depend on h2, such that
Z H=2

�H=2

½r þ h2b�s1ðh2Þdh2 ¼ V 1

2pb
;

Z H=2

�H=2

½r þ h2b�s1ðh2Þh2 dh2 ¼ 0;

Z H=2

�H=2

½r þ h2b�s2ðh2Þdh2 ¼ V 2

2pb
;

Z H=2

�H=2

½r þ h2b�s2ðh2Þh2 dh2 ¼ 0;

Z H=2

�H=2

½r þ h2b�r1ðh2Þdh2 ¼ 0;

Z H=2

�H=2

½r þ h2b�r1ðh2Þh2 dh2 ¼ � M1

2pb2
;

Z H=2

�H=2

½r þ h2b�r2ðh2Þdh2 ¼ 0;

Z H=2

�H=2

½r þ h2b�r2ðh2Þh2 dh2 ¼ � M2

2pb2
:

ð4:21Þ
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Fig. 2. Sketch of the generalized loading on a ring element.

3420 M.B. Rubin, E. Mazza / International Journal of Solids and Structures 42 (2005) 3411–3437
In these expressions, the shear forces {V1,V2} and the moments {M1,M2} are measured per unit length dh3.
It then follows from the expressions in Rubin (2000, Sec. 5.26) (with H and W interchanged) that in the
absence of body force the assigned fields are given by
mb ¼ ðV 1 þ V 2Þ
2pR

þ w

R
ðr1p1 � r2p2Þ

� �
er; mb1 ¼ W ð�V 1 þ V 2Þ

4pR
er;

mb2 ¼ � Hw

2R
ðr1p1 þ r2p2Þ

� �
er þ

ðM1 þM2Þ
2pRb

e3

� �
:

ð4:22Þ
Furthermore, it can be shown (Rubin, 2000, Sec. 5.26) that the moment (per unit length dh3) applied by the
stresses (4.20) on the lateral surfaces of the rod about its centerline is given by
da 
 mba ¼ w
2

�V 1 þ V 2

2pR


 �
þ ðM1 þM2Þ

2pR

� �
eh; ð4:23Þ
which includes both the effects of the shear forces and the pure moments.
Next, with the help of the incompressibility condition (4.12), and the expressions (4.18), (4.19) and

(4.22), the equilibrium equations (4.5) reduce to
ðV 1 þ V 2Þ
2p

þ wðr1p1 � r2p2Þ � HW P ¼ 0; ð4:24aÞ

Hw

2R
½r1p1 þ r2p2� þ

HW
3

df
da

b� 1

k2b3


 �
þ EI

kR
2

b
k
� 1

� �
¼ 0; ð4:24bÞ

M1 þM2 ¼
w
2
ðV 1 � V 2Þ; ð4:24cÞ

c ¼ 1

3

df
da

1

k2b2
; c12 ¼ ðM1 þM2Þ

2pRHWab
; ð4:24d;eÞ
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where from (4.19) P is given by
P ¼ 1

3

df
da

k � 1

k3b2


 �
� EIb

HW k2R
2

b
k
� 1


 �
: ð4:25Þ
For most of the problems considered in the next sections the shear forces and moments vanish so that
V 1 ¼ V 2 ¼ M1 ¼ M2 ¼ c12 ¼ 0: ð4:26Þ
Then, (4.24b) can be solved for c and the incompressibility condition (4.12) and (4.19) can be used to solve
(4.24a) and (4.24c) for p1 and p2 to obtain
p1 ¼
br
3r1

df
da

1

b3k2
� b


 �
þ H

2R

df
da

k � 1

k3b2


 �
þ 3EI

kHW R
2

1 � b
k


 �
1 þ bH

2kR


 �� �
; ð4:27aÞ

p2 ¼
br
3r2

df
da

1

b3k2
� b


 �
� H

2R

df
da

k � 1

k3b2


 �
þ 3EI

kHW R
2

1 � b
k


 �
1 � bH

2kR


 �� �
: ð4:27bÞ
Thus, for the problem under consideration in Section 3
p1 ¼ pc; p2 ¼ 0; ð4:28Þ
and the relevant equations become
pc ¼
br
r1

� �
HP

R
; P ¼ 1

3

df
da

k � 1

k3b2


 �
þ EIb

HW k2R
2

1 � b
k


 �
; ð4:29a;bÞ

df
da

1

b3k2
� b


 �
� H

2R

df
da

k � 1

k3b2


 �
þ 3EI

kHW R
2

1 � b
k


 �
1 � bH

2kR


 �
¼ 0; ð4:29cÞ

a ¼ 1

bk
; a ¼ a2 þ b2 þ k2; ð4:29d;eÞ
where (4.29a) is seen to be the same as (2.6).
5. Theory of a Cosserat generalized string

The theory of a Cosserat generalized string (Rubin, 2000, Sec. 5.30) is a special case of the Cosserat the-
ory of rods where the effects of bending are ignored. This theory differs from simple string theory in that it
models deformations of the string�s cross-section and it can reproduce exact solutions for all homogeneous
deformations of a uniform, homogeneous elastic material. The kinematics of the generalized string are the
same as those of the rod (4.2) and (4.3), and the balance laws are the same as (4.5)–(4.7), except that the
director couples ma are omitted
mbþ t3;3 ¼ 0; mba � ta ¼ 0; d1=2
33 T ¼ ti 	 di ð5:1Þ
Also, the effects of bending are omitted so the strain energy takes the form
mR ¼ mR�ðCÞ; q�
0R

� ¼ 1

6
f ðaÞ; ð5:2Þ
instead of (4.11) with (4.14). Thus, the constitutive equations for the string subjected to the constraints
(4.12) become
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d1=2
33 T ¼ HW �cI� c12ðd1 	 d2 þ d2 	 d1Þ þ

1

3

df
da
B

� �
; ti ¼ d1=2

33 T 
 di ð5:3Þ
instead of (4.16).
Now, using the relevant kinematics from (4.17) and (4.18), the equilibrium equations for the constrained

string (4.24) and the constitutive equation (4.25) for P reduce to
ðV 1 þ V 2Þ
2p

þ wðr1p1 � r2p2Þ � HW P ¼ 0; ð5:4aÞ

w

2R
½r1p1 þ r2p2� þ

W
3

df
da

b� 1

k2b3


 �
¼ 0; ð5:4bÞ

M1 þM2 ¼
w
2
ðV 1 � V 2Þ; ð5:4cÞ

c ¼ 1

3

df
da

1

k2b2
; c12 ¼ ðM1 þM2Þ

2pRHWab
; P ¼ 1

3

df
da

k � 1

k3b2


 �
; ð5:4d–fÞ
where the bending term I has been set equal to zero. Moreover, for the case of a string associated with the
conditions (4.26), Eqs. (4.29) reduce to
pc ¼
b�r
r1

� �
HP

R
; P ¼ 1

3

df
da

k � 1

k3b2


 �
; ð5:5a;bÞ

1

b3k2
� b


 �
� H

2R
k � 1

k3b2


 �
¼ 0; a ¼ 1

bk
; a ¼ a2 þ b2 þ k2: ð5:5c–eÞ
6. Uniaxial stress

In order to compare the predictions of the more general theories with the simple analysis of Section 2 it is
necessary to determine the constitutive equation for the engineering stress P associated with uniaxial stress.
As mentioned previously, both Cosserat theories of rods and generalized strings produce the exact three-
dimensional solutions for homogeneous deformations. In particular, for uniaxial stress in the d3 direction
with the axial stretch k, the force t3 is related to the engineering stress P by the equations
t3 ¼ HW P
d3

jd3j
; jd3j ¼ k: ð6:1Þ
Moreover, the three-dimensional strain energy is specified in the form (3.11a). Now, for uniaixal stress in
the e3 direction, the deformation is specified by
x� ¼ h1ffiffiffi
k

p e1 þ
h2ffiffiffi
k

p e2 þ ke3; ð6:2Þ
and the three-dimensional Cauchy stress becomes
T� ¼ T �
11ðe1 	 e1Þ þ T �

22ðe2 	 e2Þ þ T �
33ðe3 	 e3Þ ¼ �c�Iþ 1

3

df
da� B

�;

T �
11 ¼ T �

22 ¼ �c� þ 1

3k
df
da� ¼ 0; T �

33 ¼ �c� þ k2

3

df
da� :

ð6:3Þ
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Thus, the values of r and P in (2.5) to be used in the simple solution (2.6) become
Fig. 3.
the sim
r ¼ T �
33 ¼

1

3

df
da� k2 � 1

k

� �
; P ¼ 1

3

df
da� k � 1

k2

� �
; a� ¼ k2 þ 2

k
: ð6:4a–cÞ
7. Comparison of the theories

When the function f(a*) is specified in the form (3.11b) it is possible to compare the predictions of the
simple solution of Section 2, and the Cosserat solutions of Sections 4 and 5 with the exact three-dimensional
solution of Section 3. Specifically, the kinematics are defined by (2.3) and (2.10). The simple solution is
characterized by (2.7), (2.8), (3.11b), (6.4b); the solution of a Cosserat rod is characterized by (3.11b),
(4.29); the solution of a Cosserat generalized string is characterized by (3.11b), (5.5); and the exact solution
is characterized by (3.8), (3.11b), (3.14), (3.15).

In practice, the ERT device has to occlude the blood vessels at a particular location on the limb of a
specific patient who has a specific blood pressure. In choosing the appropriate ERT it is most convenient
to measure the circumference of the limb at the location of application of the tourniquet and to calculate
the desired stretch to correspond to the specific blood pressure. Consequently, it is most convenient to
determine the applied pressure as a function of the stretch k1 of the inner radius (2.10) of the ERT.

Figs. 3 and 4 compare the predictions of: the exact 3D theory, a Cosserat rod, a Cosserat generalized
string, and the simple analysis for a thick ring (R=H ¼ 2) and a thinner ring (R=H ¼ 10), respectively. Spe-
cifically, the normalized pressure (pcR=H=E), the relative pressure (pc/P) and the stretches a and b are plot-
ted as functions of the inner stretch k1. The relative pressure (pc/P) is not presented for the exact solution
since P is only an average value of stress.
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The results in Figs. 3 and 4 indicate that for this problem the effects of bending stiffness are negligible
since the results of a Cosserat generalized string nearly coincide with the exact solution and that of a Coss-
erat rod. In both cases the relative pressure (pc/P) decreases with increasing stretch k1. Moreover, the fact
that the pressure pc is not negligible relative to the average circumferential stress P for the thick ring causes
the stretches a and b to differ significantly from those predicted by the simple analysis which assumes uni-
axial stress. This in turn causes the contact pressure pc and the relative pressure (pc/P) to be incorrectly
predicted by the simple analysis. However, as the ring becomes thinner this error decreases. Specifically,
from Fig. 4 it can be seen that when R=H ¼ 10 this error is relatively small. Also, it is noted from Fig. 3
that the more exact solutions predict a larger value for the axial stretch a and a smaller value for the radial
stretch b, relative to the simple solution. This is consistent with the fact that pressure pc causes more radial
contraction and less axial contraction than would be present in a state of uniaxial circumferential stress.

In summary, the main result of this section is that for thick rings the contact pressure pc is not negligible
relative to the average circumferential stress P so it is necessary to use a more general theory which models
the non-uniaxial stress state in the ring. Moreover, it has been shown that the Cosserat theory of a general-
ized string predicts accurate results for this problem even for relatively thick rings. Therefore, in the follow-
ing analysis use will be made of the simpler theory of a Cosserat generalized string.
8. Experiments

One of the ERT devices developed by OHK Medical Devices Inc. is a torus, which in its unstressed ref-
erence configuration, has inner diameter D1 and outer diameter D2 given by
D1 ¼ 52 mm; D2 ¼ 76 mm; ð8:1Þ
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so that the diameter of the circular cross-section is given by (D2 � D1)/2. The ring is made from a compo-
sition of silicone which was designed to have an elastic response that is compatible with the proposed
application.

To determine the tensile properties of the ERT the ring was cut and the ends were pulled apart by coaxial
forces. The engineering stress P (force per unit reference cross-sectional area) and the stretch k where mea-
sured to obtain the experimental values shown in Fig. 5a and b. Due to the toroidal shape of the ring in its
unstressed configuration the stress in the cut stretched ring was not exactly uniaxial. However, this effect is
negligible because the value of P required to straighten the ring was only about 2.6 KPa. Fig. 5a shows
results of two experiments on two different samples of the ring. Also, Fig. 5a shows an attempt to match
the experimental data using (6.4b) with the simple constitutive assumption f(a*) given in (3.11b)
P ¼ E
3

k � 1

k2

� �
; E ¼ 0:60 MPa: ð8:2Þ
Obviously, this simple strain energy function cannot adequately model the experimental data. An im-
proved strain energy function can be specified by taking f(a*) in (3.11b) in form
f ða�Þ ¼ 3E1

m
1 � exp m

a�

3
� 1


 �
 �� �
þ 3E2

ð1 þ nÞ
a�

3


 �nþ1

� 1

" #
; E ¼ E1 þ E2; ð8:3Þ
where the constants E1 and E2 have the units of stress, the constants m and n are unitless and E is the zero
stress Young�s modulus. It then follows from (6.4) that for uniaxial stress
P ¼ 1

3
E1 exp �m

a�

3
� 1


 �
 �
þ E2

a�

3


 �n� �
k � 1

k2

� �
; a� ¼ k2 þ 2

k
: ð8:4Þ
Furthermore, using this functional form together with the constants
E1 ¼ 0:45 MPa; m ¼ 1:5; E2 ¼ 0:18 MPa; n ¼ 0:82; ð8:5Þ

it is possible to match the experimental data quite accurately as shown in Fig. 5b.
9. An approximate analysis of the torus

Modeling the actual problem of the ERT device would require a two-dimensional axisymmetric nonlin-
ear finite element calculation of the deformation of the toroidal ring which is in contact with soft tissue. The
first simplifying approximation is to replace the soft tissue by a rigid cylinder. Cylinders of different radii
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are used to expand the ring to different degrees of stretch. As the radius of the cylinder increases the contact
area between the cylinder and the ring increases and the ring stretches circumferentially. From simple anal-
ysis similar to that in Section 2 it is clear that the radial force per unit circumferential length of the ring is
controlled by the tensile force in the ring, which is mainly determined by the circumferential stretch and not
the actual contact area. In contrast, the maximum and average contact pressures applied by the ring on the
cylinder are sensitive to this contact area. Moreover, to model the development of this contact area it is
necessary to model the changes in the initial circular cross-section of the ring.

To this end, an approximate model is proposed which models the torus as N adjacent disks (see Fig. 6 for
N = 8). In its reference configuration, the Ith disk has internal radius IR1, external radius IR2, radial height

IH, axial width W and mean radius R. In its deformed present configuration it has internal radius Ir1, exter-
nal radius Ir2, radial height Ih and axial width Iw. In this model shear forces and moments are applied be-
tween the disks to maintain the same mean radius �r for all disks and to keep them from rotating. But, the
disks are allowed to slide on each other in the sense that radial thickness of each disk can change indepen-
dently. Also, the disks are modeled using the theory of a Cosserat generalized string discussed in Section 5
with the strain energy function (4.14) and (8.3).

More specifically, the reference torus is divided into N disks with equal widths W and the reference axial
locations {IZ*, I+1Z*} of the edges of the Ith disk are given by
Fig
W ¼ D2 � D1

2N
; IZ� ¼ � D2 � D1

4

� �
þ ðI � 1ÞW for I ¼ 1; 2; . . . ;N þ 1: ð9:1Þ
Then, the heights IH are specified so that the Ith disk has the same cross-sectional area as the corresponding
portion of the torus
IH ¼ 1

W

D2 � D1

4

� �2

Iþ1b � Ib þ 1

2
fsinð2Iþ1bÞ � sinð2IbÞg

� �
for I ¼ 1; 2; . . . ;N ;

IbI ¼ sin�1 4IZ�

D2 � D1

� �
for I ¼ 1; 2; . . . ;N þ 1:

ð9:2Þ
Next, the reference mean radius R of all the disks is specified so that the middle disk has the same inner
radius as the actual torus with
IIH

IR1

W

IR2

. 6. Approximate model of the circular cross-section of the torus showing the reference geometry of the Ith disk (N = 8).
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R ¼ D1

2
þ Hmax

2
; Hmax ¼ MaxðIHÞ;

IR1 ¼ R� IH
2
; IR2 ¼ Rþ IH

2
for I ¼ 1; 2; . . . ;N :

ð9:3Þ
Using Eqs. (5.4) with a subscript I added to each term, the equilibrium equations associated with the Ith
disk can be written in the forms
Iw

2R
Ir1Ipc þ

W
3

df
dIa

I b�
1

k2
Ib

3


 �
¼ 0; ð9:4aÞ

IP ¼ 1

3

df
dIa

k � 1

k3
I b

2

 !
; Ia ¼ Ia2 þ I b

2 þ k2; ð9:4b;cÞ

Ia ¼ 1

kIb
; Ih ¼ I bIH ; Iw ¼ I aW ; �r ¼ kR; I r1 ¼ �r � I h

2
; ð9:4d–hÞ

IV 2 ¼ �IV 1 þ 2p½�IwIr1Ipc þ IHW IP�; ð9:4iÞ

IM2 ¼ �IM1 þ Iw
2
ðIV 1 � IV 2Þ; ð9:4jÞ
where the external pressure Ip2 has been set to zero and the internal pressure Ip1 has been denoted as Ipc.
For a specified value k1 of the stretch of the circumference of the inner portion of the ring, the radius r1

of this inner portion is given by
r1 ¼ k1

D1

2
: ð9:5Þ
Then, Eqs. (9.4) are solved for the unknowns
k; fIpc or Ibg; IV 1; IV 2; IM1; IM2; ð9:6Þ

subject to the boundary conditions
IV 1 ¼ 0; IM1 ¼ 0; Nþ1V 2 ¼ 0; Nþ1M2 ¼ 0; ð9:7a–dÞ

and the kinematic restriction
I r1 P r1: ð9:8Þ

Also, the kinetic coupling equations
I�1V 2 þ IV 1 ¼ 0; I�1M2 þ IM1 ¼ 0 for I ¼ 2; 3; . . . ;N ; ð9:9Þ

require the shear force and moment applied by each disk on its neighbor to be equal in magnitude and
opposite in direction.

For a given value of k1 these equations are solved iteratively by guessing a value for
k: ð9:10Þ

Then, from (9.4a,e,g,h) it can be seen that the I�th disk will be free of contact with the cylinder if
Ib ¼ 1ffiffiffi
k

p ; Ipc ¼ 0; ð9:11Þ
and the inner radius satisfies the condition
I r1 ¼ kR� IH

2
ffiffiffi
k

p > r1: ð9:12Þ
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On the other hand, if (9.12) is not satisfied then the Ith disk is in contact with the rigid cylinder and Ib is
determined by the kinematic condition that Ir1 = r1
Fig. 7.
pressu
I b ¼ 2

IH
½kR� r1�; ð9:13Þ
and the pressure Ipc is calculated using (9.4a). Next, the values of the shear forces and moments are deter-
mined by the conditions (9.4i,j), (9.7a) and (9.9). Then, the value of k is readjusted until the boundary con-
dition (9.7c) is satisfied. Due to symmetry, the boundary condition (9.7d) will automatically be satisfied by
the converged solution.

In order to analyze the results it is convenient to denote pmax as the contact pressure applied to the mid-
dle disk, and pavg as the average pressure applied to all disks which are in contact
pavg ¼
1

wc

XN
I¼1

wIhI pci; wc ¼
XN
I¼1

wIHðIpcÞ; Ac ¼ 2pr1wc; ð9:14Þ
where wc is the length of the edges of the disks which are in contact, Ac is the contact area on the cylinder,
hxi denotes the McAuley brackets, and HðxÞ denotes the Heavyside function
hxi ¼ xþ jxj
2

; HðxÞ ¼
1 for x > 0;

0 for x 6 0:



ð9:15Þ
Fig. 7 shows the maximum contact pressure pmax, the average contact pressure pavg and the axial length
wc of the contact area predicted for two discretizations N = 1 and N = 512. In order to compare the pres-
sure applied by the ERT device with that applied by standard pressure cuffs the pressure is converted to the
units of mmHg using the conversion factor
133:3 Pa ¼ 1 mmHg: ð9:16Þ
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For N = 1 the torus is modeled as a single ring with rectangular cross-section. Comparison of the results in
Fig. 7a and c shows that this approximation is too crude because the predicted values of the pressure are
substantially lower that that for N = 512. This means that the models of the previous sections are not able
to accurately predict the contact pressure since the extent of the contact region is not modeled correctly (see
Fig. 7b and d). When N is greater than unity the prediction of the maximum pressure pmax is a continuous
function of the stretch k1, but the prediction of the contact length wc is not continuous as new disks come
into contact with the cylinder. For this reason a large value of N = 512 was used for Fig. 7c and d so that
the curve for pavg will be relatively smooth, but the results are reasonably accurate for much smaller values
of N (around N = 32).

Fig. 8a shows the deformed shape of the cross-section and Fig. 8b shows the distribution of the contact
pressure pc as functions of the axial coordinate z for k1 = 1.5 and N = 512. This value of k1 was chosen
because from Fig. 7c it can be send that it is close to the value associated with the peak pressure. For this
case the deformed disks occupy the region jzj 6 5.29 mm but the disks are in contact only in the region
jzj 6 2.39 mm. In Fig. 8a the radius r1 of the cylinder has been subtracted from the radial location of
the surfaces of the cross-section for convenience. The flat inner surface shown in Fig. 8a is due to contact
with the rigid cylinder but the flat outer surface is an unphysical consequence of the constraint that all disks
have the same mean radius �r. Moreover, this constraint causes the prediction of the maximum contact pres-
sure pmax to be overestimated by the model. However, it will be shown in the next section that this model
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Fig. 8. Plot of: (a) the deformed shape of the cross-section and (b) the axial distribution of the contact pressure pc for k1 = 1.5 and
N = 512 using the approximate Cosserat model of the torus.
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predicts the average contact pressure pavg much more accurately than the predictions of a single disk
(Fig. 7a and b) associated with the previous sections.
10. Finite element calculations

The model of Section 9 is expected to overestimate the maximum contact pressure pmax because the shear
deformation in each element is constrained to be zero. Since it is important to ensure that the ERT device
does not damage tissue it is necessary to evaluate the extent to which the approximate model of Section 9
overestimates the value of pmax. To this end, the three-dimensional strain energy function (3.11a) with the
specifications (8.3) and (8.5) was implemented in the commercial computer program ABAQUS. Specifi-
cally, the strain energy as well as its first and second derivatives were implemented in the subroutine UHY-
PER which is used to model isotropic elastic response of compressible and incompressible materials. The
implementation was verified by a simulation of the uniaxial tensile tests shown in Fig. 5b using the element
type CAX6MH which models hybrid axisymmetric elements with 6-nodes and triangular shape.

In order to simulate the deformation of the ring for increasing values of the radius of a rigid cylinder, the
following procedure was used: (i) a very stiff thermoelastic cylinder was modeled with axisymmetric ele-
ments; (ii) an arbitrary heat expansion coefficient was specified and a homogeneous temperature field
was prescribed at the cylinder�s nodes; (iii) the value of the temperature was increased in order to increase
the radius of the cylinder to obtain the desired stretch k1 of the inner surface of the ring. In addition, the
ring was prescribed to remain at constant room temperature.

A number of simulations were preformed using friction and hourglass control to verify that the reference
calculations (without friction) presented here are properly converged and representative of the expected
physical response of the ERT device. Fig. 9 shows the deformed shape of the cross-section and the radial
component of the Cauchy stress (mmHg) for k1 = 1.5. In particular, it can be seen that the Cosserat de-
formed shape shown in Fig. 8a is reasonably close to that predicted by ABAQUS (Fig. 9) except for the
unphysical flat outer region. Fig. 10 compares the predictions of ABAQUS with the approximate Cosserat
model (N = 512) of Section 9 for: (a) the maximum pmax and average pavg contact pressures and (b) the axial
length wc of the line of contact for different values of the internal stretch k1. As stated before, the Cosserat
Fig. 9. The deformed shape of the cross-section and the radial component of the Cauchy stress (mmHg) for k1 = 1.5.
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model over predicts the maximum contact pressure but the average contact pressure and the extent of the
contact line are surprisingly accurate for such a simple model.

To partially validate the constitutive equation for the silicone ring, experiments were performed to deter-
mine the axial length wc of the contact of the ring with a rigid cylinder. Specifically, the ring was rolled onto
cylinders of different radii, the cylinders were sprayed with paint and then the ring was removed and the
unpainted region was measured to determine the value of wc. The experimental results shown in Fig.
10b indicate that the constitutive equation for the ring and the theoretical predictions of wc are reasonably
good for the main range of application (1.5 6 k1 6 2.5) of the ERT device but that for large values of
stretch the theoretical model over predicts the extent of the contact region. This may be partially due to
the presence of viscoplasticity in the ring which led to a slightly increased radius of the unloaded ring after
being stretched a number of times. Moreover, this viscoplasticity might cause some stress relaxation during
more lengthy surgical procedures.
11. Modeling the stockinette

In the actual S-MARTTM device some of the stockinette remains rolled on the silicone ring to increase the
region of contact with the skin and to reduce the maximum contact pressure. The unstressed radial thick-
ness Ts of the stockinette left on the ring when the S-MARTTM device is positioned at the desired location of
the limb is easily controlled by adding or removing length form the stockinette during the manufacturing
process. Therefore, the value of Ts is an important design parameter which can be used to control the max-
imum and average pressure applied by the device.

The stockinette is essentially a thin elastic cylindrical tube whose net structure offers only limited resis-
tance to circumferential and axial stretching. Consequently, when it is rolled onto the elastic ring to form
the S-MARTTM its main effect is to cause an elastic cushion to radial compression of the resulting torus. For
this reason the stockinette is modeled as an elastic foundation for the ERT ring. Also, this elastic founda-
tion is assumed to be in uniaxal stress.

To quantify the influence of the stockinette, experiments were performed to determine its uniaxial stress
response in compression. Specifically, a few layers of the stockinette, with unstressed thickness H = 5 mm,
were loaded by different weights with known contact area and the deformed thickness h was measured. This
unloaded thickness was chosen because it corresponds to the typical thickness of the stockinette remaining
rolled on one model of the S-MARTTM device when the tourniquet is placed on the upper portion of the
arm. Fig. 11 shows the measured values of the engineering stress P versus the thickness stretch k = h/H.
This curve was fitted using an incompressible isotropic hyperelastic material with the strain energy function
(5.2) and (8.3) and the material constants specified by
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E1 ¼ 0; m ¼ 0; E2 ¼ 0:4 KPa; n ¼ 14:0: ð11:1Þ

Also, the value of P was determined by (8.4) and the results are shown in Fig. 11.

The model of Section 9 can be generalized to include the influence of the stockinette by adding an elastic
foundation (Fig. 12) to the disks shown in Fig. 6. Specifically, the unstressed radial thickness Rs of the
cross-section of the torus associated with the silicone ring and the stockinette is given by
Rs ¼
D2 � D1 þ 4T s

4
: ð11:2Þ
Then, using formulas of the type developed in Section 9 which specify that the unstressed cross-sectional
area of the model to be the same as that of the torus it can be shown that the unstressed inner radius

IR0 of the elastic foundation associated with the Ith stockinette is given by
IR0 ¼ IR1 þ IR2

2
� 1

2W

D2 � D1 þ 4T s

4

� �2

Iþ1d � Id þ 1

2
fsinð2Iþ1dÞ � sinð2IdÞg

� �
for I ¼ 1; 2; . . . ;N ; ð11:3Þ
where the angles Id are defined by
Id ¼ sin�1 4IZ�

D2 � D1 þ 4T s

� �
for I ¼ 1; 2; . . . ;N þ 1; ð11:4Þ
Ring

Stockinette

IR0
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IR2
I'th element

of ring
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Fig. 12. Sketch of the Ith element of the torus with the model of the stockinette.
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and fIR1; IR2;W ; IZ�g are specified by (9.1)–(9.3). Moreover, with the help of (2.5), (8.4) and (11.1) the con-
stitutive equation for the contact pressure Ipc acting in the Ith element is given by
Ipc ¼ �IkcPc ¼ �E2

3
Ik

3
c þ 2

3Ikc

� �n
Ik

2
c �

1

Ikc

� �
; Ikc ¼ I r1 � I r0

IR1 � IR0

; ð11:5Þ
where Ikc is the stretch of the Ith stockinette element and Ir0 is its deformed inner radius.
The modified model of this section is the same as that of Section 9 except that the contact pressure Ipc is

now determined by the constitutive equation (11.5) and the kinematic restriction (9.8) is replaced by
I r0 P r1: ð11:6Þ

The expression (9.5) is retained for the radius r1 of the rigid cylinder even though the inner radius of the
torus with the stockinette is smaller than the value of r1 when k1 equals unity. For a given value of the inner
stretch k1 in (9.5) the equations are solved iteratively by first guessing a value for the stretch k in (9.4). Then,
from (9.4a,e,g,h), (11.5) it can be seen that the Ith stockinette will be free of contact with the rigid cylinder if
Ib ¼ 1ffiffiffi
k

p ; Ipc ¼ 0; Ikc ¼ 1; I r0 ¼ I r1 � ðIR1 � IR0Þ; ð11:7Þ
and the inner radius satisfies the condition
I r0 ¼ kR� IH

2
ffiffiffi
k

p � ðIR1 � IR0Þ > r1: ð11:8Þ
On the other hand, if (11.8) is not satisfied then the Ith stockinette is in contact with the rigid cylinder, Ir0 is
specified by the kinematic condition
I r0 ¼ r1; ð11:9Þ

and Ir1 are determined iteratively by satisfying the kinetic equations (9.4a) using the constitutive equation
(11.5). Next, the values of the shear forces and moments are determined by the conditions (9.4i,j), (9.7a) and
(9.9). Then, the value of k is readjusted until the boundary condition (9.7c) is satisfied. Due to symmetry,
the boundary condition (9.7d) will automatically be satisfied by the converged solution. Moreover, it
should be emphasized that although it is necessary to solve N + 1 nonlinear equations for the N + 1
unknowns
fk; I r1g; ð11:10Þ
for a specified value of k the equations for Ir1 are a set of N uncoupled equations so the numerical procedure
is relatively efficient. Also, symmetry conditions further reduce the numerical effort.

Since the stockinette is modeled using uniaxial stress elements, the contact pressure between stockinette
and silicone ring is equal to the contact pressure between stockinette and rigid cylinder. Fig. 13 shows plots
of the maximum pressure (Fig. 13a) and the average pressure (Fig. 13b) for different values of the reference
thickness Ts of the stockinette. For Ts = 0 the solution is that of Section 9 with N = 512 and for the other
values of Ts the solution is that of this section with N = 16. This solution for the maximum pressure for
N = 16 is converged since it is quite close to the solution for N = 8. Some oscillations occurred in the solu-
tion for the average pressure with Ts = 2 mm and are due to the discreteness of the mesh which causes dis-
continuities in the contact area as a new element comes into contact.

Most importantly, it can be observed from Fig. 13a that increasing the thickness Ts of the stockinette can
significantly reduce the magnitude of the maximum contact pressure. Also, it can be seen from Fig. 13b that
for the cases with the stockinette, the average pressure is nearly insensitive to the value of Ts and that its
value in the typical range of application of the ERT (about 1.5 6 k1 6 2.5) is about 400 mmHg. The cal-
culated average pressure is considerably reduced with respect to the calculations without stockinette. This
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Fig. 13. Plots of: (a) the maximum contact pressure and (b) the average contact pressure versus the stretch k1 for different values of the
reference thickness Ts of the stockinette.
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reduction is due to an increase of the contact area which might be overestimated by the present model since
some radial support is provided by stockinette in elements at the extremities of the contact region, where
the normal to the actual ring has a larger axial component than radial component.

Fig. 14 shows the results of calculations for a rigid cylinder of radius 39 mm (corresponding to a stretch
k1 = 1.5). Specifically, Fig. 14a shows the deformed shape of the cross-section of the silicone ring for
Ts = 5 mm, and Fig. 14b shows the axial distribution of the contact pressure pc for different values of
Ts. The space below the ring in Fig. 14a is supported by the compressed stockinette. The results in Fig.
14b for Ts = 0 are those of Section 9 with N = 512, whereas the other results are those of this section with
N = 128. This high value of N was used to produce smooth pressure distributions, but as noted earlier the
solution converges for values of N around 16. Again, it can be seen from Fig. 14b that the thickness Ts of
the stockinette has a significant influence on the peak values of the contact pressure.

A finite element mesh was developed to model the stockinette as a cylindrical shell of reference radial
thickness 5 mm and axial length 20 mm, which was placed in sliding contact with the outer surface of a rigid
cylinder of radius 39 mm (corresponding to k1 = 1.5). Initially, the stockinette shell was prestretched
slightly to simulate its state when rolled on the ring. This finite element simulation of the ERT device is
not straight forward. In several attempts the calculations failed to converge. The difficulties are mainly re-
lated to the fact that the problem investigated is characterized by two sources of nonlinearity: the nonlinear
material behavior (especially of the stockinette) and the opening and closing of contact surfaces at the ring-
stockinette and stockinette-cylinder interfaces. Convergence problems were solved by adjusting the mesh
refinement at these contact interfaces, with smaller elements used for the so called ‘‘slave surface’’ (corre-
sponding to the softer stockinette material) with respect to the ‘‘master surface’’.
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In the simulations, the silicone ring was stretched by external radial forces and placed over the stocki-
nette. Finally, these external radial forces were progressively removed and the structure was relaxed to equi-
librium. In spite of these special efforts, repeated opening and closing of the contacts at specific nodes
during the calculations led to so called ‘‘severe discontinuity iterations’’, which in turn resulted in cutbacks
of the time increments. As a consequence, a large number of increments with multiple iterations had to be
calculated, so the calculation times were about 10 min for one single value of stretch k1 (one equilibrium
state) with the present hardware implementation. This should be compared with a calculation time of about
10 min using the Cosserat theory for simulating the 100 equilibrium states in each of the curves shown in
Fig. 13. Thus, simulations using the Cosserat model are characterized by considerably smaller calculation
times than those for the proposed finite element model. In addition, the Cosserat model is more suitable for
optimization purposes, since different values of the stockinette thickness Ts can be simulated by changing
one single input parameter of the calculation. In contrast, for the finite element model a new mesh has to be
created for each thickness value, which is a time consuming process for the user rather than for the
computer.

Fig. 15 shows the deformed configuration of the stockinette and the silicone ring and the radial compo-
nent of the Cauchy stress for a rigid cylinder with k1 = 1.5. Comparison of the results in Fig. 14a and Fig.
15 shows that Cosserat and finite element models predict similar shapes and sizes of the cross-section of the
silicone ring for a stockinette of reference thickness Ts = 5 mm. Also, the value pc = 755 mmHg of the



Fig. 15. Deformed configuration of the stockinette and the silicone ring and the radial component of the Cauchy stress for a rigid
cylinder with k1 = 1.5.
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maximum contact pressure predicted by the Cosserat model is reasonably close to the value
pc = 790 mmHg of the maximum contact pressure between stockinette and rigid cylinder predicted by
the finite element model. The difference between these two values is mainly due to the fact that the axisym-
metric finite element model admits circumferential stresses in the stockinette which have magnitudes about
60% of the radial stresses. This effect stiffens the stockinette and causes its radial thickness to be larger than
that predicted by the Cosserat model. Moreover, it can be seen from Fig. 15 that the radial stress in the
stockinette in nearly uniform axially which partially justifies the assumption of an elastic foundation in
the Cosserat model.
12. Conclusions

Here, it has been shown that accurate determination of the contact pressure applied by a silicone ring
model of the ERT device is surprisingly difficult. In particular, the analysis necessarily must include:
cross-sectional deformations, the specific shape of the cross-section of the ring, large deformations, the
influence of contact pressures which are of the same order as the circumferential stresses, and material non-
linearity. Since the effects of bending are insignificant the Cosserat theory of a generalized string (which
includes deformation of the cross-section) provides a sufficiently accurate model of the ring that can easily
incorporate nonlinear material properties.

A special constrained Cosserat theory of a generalized string was developed to model details of the toroi-
dal shape of the ERT device and the predictions of the contact pressure and the axial extent of the contact
region have been shown to be in reasonable agreement with axisymmetric finite element analysis using the
program ABAQUS. In addition, more detailed Cosserat and finite element models have been used to show
the significant influence of the stockinette sterile gauze in the S-MARTTM device on the reduction of both
the maximum and average contact pressures. Since numerical simulations with the Cosserat model are con-
siderably faster than those with the finite element models, the Cosserat analysis is more suitable for opti-
mization of the thickness of the stockinette.
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